MODEL CUB5I - MINIATURE ELECTRONIC 5-DIGIT DC CURRENT METER

GENERAL DESCRIPTION
The CUB5 provides the user the ultimate in flexibility, from its complete user programming to the optional setpoint control and communication capability. The CUB5I accepts a DC Current input signal and provides a display in the desired unit of measure. The meter also features minimum and maximum display capture, display offset, units indicator, and programmable user input. The display can be toggled either manually or automatically between the selected displays.

The CUB5 display has 0.48" (12.2 mm) high digits. The LCD is available in two versions, reflective and red/green backlight. The backlight version is user selectable for the desired color and also has variable display intensity.

The capability of the CUB5 can be easily expanded with the addition of option cards. Setpoint capability is field installable with the addition of the setpoint output cards. Serial communications capability for RS232 or RS485 is added with a serial option card.

The CUB5 can be powered from an optional Red Lion Micro-Line/Sensor Power Supply (MLPS), which attaches directly to the back of a CUB5. The MLPS is powered from 85 to 250 V AC and provides up to 400 mA to drive the unit and sensors.

CURRENT
The CUB5I is the DC Current meter. It features 4 current input ranges, that are selected by the user via a programming jumper and software input range selection. The ranges consist of following: 200 µA, 2 mA, 20 mA, or 200 mA. Users should select the appropriate current range that covers their maximum signal input.

SAFETY SUMMARY
All safety related regulations, local codes and instructions that appear in this literature or on equipment must be observed to ensure personal safety and to prevent damage to either the instrument or equipment connected to it. If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

Do not use this meter to directly command motors, valves, or other actuators not equipped with safeguards. To do so can be potentially harmful to persons or equipment in the event of a fault to the meter.

DIMENSIONS In inches (mm)

Note: Recommended minimum clearance (behind the panel) for mounting clip installation is 2.15" (54.6) H x 3.00" (76.2) W.
General Meter Specifications

1. **DISPLAY**: 5 digit LCD 0.48” (12.2 mm) high digits
 CUB5IR00: Reflective LCD with full viewing angle
 CUB5IB00: Transmissive LCD with selectable red or green LED backlight, viewing angle optimized. Display color change capability with output state when using an output module.

2. **POWER**: Input voltage range is +9 to +28 VDC with short circuit and input polarity protection. Must use an RLC model MLPS1 or an NEC Class 2 or Limited Power Source (LPS) rated power supply.

3. **INPUT RANGES**: Jumper Selectable
 D.C. Currents: 200 μA, 2 mA, 20 mA, or 200 mA

4. **SIGNAL INPUTS**:
<table>
<thead>
<tr>
<th>MODEL NO.</th>
<th>DISPLAY COLOR</th>
<th>INPUT CURRENT @ 9 VDC WITHOUT CUB5IR00</th>
<th>INPUT CURRENT @ 9 VDC WITH CUB5IR00</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUB5I00</td>
<td>Red</td>
<td>10 mA</td>
<td>40 mA</td>
</tr>
<tr>
<td>CUB5IB00</td>
<td>Red (max intensity)</td>
<td>85 mA</td>
<td>115 mA</td>
</tr>
<tr>
<td>CUB5IB00</td>
<td>Green (max intensity)</td>
<td>95 mA</td>
<td>125 mA</td>
</tr>
</tbody>
</table>

5. **OVERRANGE RATINGS, PROTECTION & INDICATION**:
 9 to 28 VDC power circuit is not isolated from the signal circuit.
 Input Overrange Indication: “.....”
 Input Underrange Indication: “.....”
 Display Overrange/Underrange Indication: “......”/“.....”

6. **RESPONSE TIME**:
 Display: 500 msec min.
 Output: 800 msec max (with input filter setting of 0)

7. **NORMAL MODE REJECTION**: 60 dB 50/60 Hz

8. **USER INPUT (USR)**: Programmable input. Connect terminal to common (USR2 COMM) to activate function. Internal 10kΩ pull-up resistor to +9 to +28 VDC.
 Threshold Levels: VIL = 1.0 V max; VIH = 2.4 V min; VMAX = 28 VDC
 Response Time: 5 msec typ.; 50 msec debounce (activation and release)

9. **MEMORY**: Nonvolatile E²PROM memory retains all programming parameters and max/min values when power is removed.

10. **ENVIRONMENTAL CONDITIONS**:
 Operating Temperature Range for CUB5IR00: -35 to 75°C
 Operating Temperature Range for CUB5IB00 depends on display color and intensity level as per below:

INTENSITY LEVEL	TEMPERATURE
Red Display	
1 & 2	-35 to 75°C
3	-35 to 70°C
4	-35 to 60°C
5	-35 to 50°C
Green Display	
1 & 2	-35 to 75°C
3	-35 to 65°C
4	-35 to 50°C
5	-35 to 35°C

11. **CONSTRUCTION**: This unit is rated for NEMA 4X/IP65 requirements for outdoor use. Installation Category I, Pollution Degree 2. High impact plastic case with clear viewing window. Panel gasket and mounting clip included.

12. **CERTIFICATIONS AND COMPLIANCE**:
 SAFETY:
 UL Recognized Component. File #E179259, UL61010-1, CSA22.2 No. 61010-1
 Recognized to U.S. and Canadian requirements under the Component Recognition Program of Underwriters Laboratories, Inc.
 UL Listed, File # E137808, UL508, CSA C22.2 No. 14-M95
 LISTED by Und. Lab. Inc. to U.S. and Canadian safety standards
 Type 4X Outdoor Enclosure rating (Face only), UL50
 Type 4 Electrical Equipment for measurement, control, and laboratory use, Part 1.
 Type 4X Outdoor Enclosure rating (Face only), IEC 529

13. **ELECTROMAGNETIC COMPATIBILITY**:
 Emissions and Immunity to EN 61326: Electrical Equipment for Measurement, Control and Laboratory use.

14. **WEIGHT**: 3.2 oz (100 g)

1 Crimson software is a free download from http://www.redlion.net
Optional Plug-in Cards

Adding Option Cards

The CUB5 meters can be fitted with optional output cards and/or serial communications cards. The details for the plug-in cards can be reviewed in the specification section below. The plug-in cards, that are sold separately, can be installed initially or at a later date.

⚠️ **WARNING:** Disconnect all power to the unit before installing Plug-in card.

Note: Measurement errors may occur if signal input common is shared with another circuit common (ie, serial common, Dual Sinking Output option card, or Power Supply common) on multiple units.

Single Relay Card

- **Type:** Single FORM-C relay
- **Isolation To Sensor & User Input Commons:** 1400 Vrms for 1 min.
- **Working Voltage:** 150 Vrms
- **Contact Rating:** 1 amp @ 30 VDC resistive; 0.3 amp @ 125 VAC resistive
- **Life Expectancy:** 100,000 minimum operations

Dual Sinking Output Card

- **Type:** Non-isolated switched DC, N Channel open drain MOSFET
- **Current Rating:** 100 mA max.
- **VDS ON:** 0.7 V @ 100 mA
- **VDS MAX:** 30 VDC
- **Offstate Leakage Current:** 0.5 mA max.

RS485 Serial Communications Card

- **Type:** RS485 multi-point balanced interface (non-isolated)
- **Baud Rate:** 300 to 38.4k
- **Data Format:** 7/8 bits; odd, even, or no parity
- **Bus Address:** 0 to 99; max 32 meters per line
- **Transmit Delay:** Selectable (refer to CUB5COM bulletin)

RS232 Serial Communications Card

- **Type:** USB virtual comms port
- **Connection:** Type B
- **Baud Rate:** 300 to 38.4k

USB Programming Card

- **Type:** USB virtual comms port
- **Connection:** Type B
- **Baud Rate:** 300 to 38.4k
- **Unit Address:** 0 to 99

1.0 Installing the Meter

Installation

The meter meets NEMA 4X/IP65 requirements when properly installed. The unit is intended to be mounted into an enclosed panel. Prepare the panel cutout to the dimensions shown. Remove the panel latch from the unit. Slide the panel gasket over the rear of the unit to the back of the bezel. The unit should be installed fully assembled. Insert the unit into the panel cutout.

While holding the unit in place, push the panel latch over the rear of the unit so that the tabs of the panel latch engage in the slots on the case.

The panel latch should be engaged in the farthest forward slot possible. To achieve a proper seal, tighten the latch screws evenly until the unit is snug in the panel (Torque to approx. 28 to 36 in-oz [0.202 to 0.26 N-m]). Do not overtighten the screws.

Installation Environment

The unit should be installed in a location that does not exceed the operating temperature and provides good air circulation. Placing the unit near devices that generate excessive heat should be avoided.

The bezel should only be cleaned with a soft cloth and neutral soap product. Do NOT use solvents. Continuous exposure to direct sunlight may accelerate the aging process of the bezel.

Do not use tools of any kind (screwdrivers, pens, pencils, etc.) to operate the keypad of the unit.

2.0 Setting the Jumpers

Input Range Jumper

This jumper is used to select the proper input range. The input range selected in programming must match the jumper setting. Select a range that is high enough to accommodate the maximum signal input to avoid overloads. To access the jumper, remove the rear cover of the meter.

⚠️ **Warning:** Exposed line voltage exists on the circuit boards. Remove all power to the meter and load circuits before accessing inside of the meter.

Removing the Rear Cover

To remove the rear cover, locate the cover locking tab below the 2nd and 3rd input terminals. To release the tab, insert a small, flat blade screwdriver between the tab and the plastic wall below the terminals. Inserting the screwdriver will provide enough pressure to release the tab locks. To replace the cover, align the cover with the input terminals and press down until the cover snaps into place.
3.0 INSTALLING PLUG-IN CARDS

The Plug-in cards are separately purchased option cards that perform specific functions. The cards plug into the main circuit board of the meter.

4.0 WIRING THE METER

WIRING OVERVIEW

Electrical connections are made via screw- clamp terminals located on the back of the meter. All conductors should conform to the meter’s voltage and current ratings. All cabling should conform to appropriate standards of good installation, local codes and regulations. It is recommended that the power supplied to the meter be protected by a fuse or circuit breaker.

EMC INSTALLATION GUIDELINES

Although this meter is designed with a high degree of immunity to Electro-Magnetic Interference (EMI), proper installation and wiring methods must be followed to ensure compatibility in each application. The type of the electrical noise, source or coupling method into the meter may be different for various installations. The meter becomes more immune to EMI with fewer I/O connections. Cable length, routing, and shield termination are very important and can mean the difference between a successful or troublesome installation. Listed below are some EMC guidelines for successful installation in an industrial environment.

1. The meter should be mounted in a metal enclosure, which is properly grounded. This is especially useful in applications where cable runs are long and portable two-way radios are used in close proximity or if the installation is near a commercial radio transmitter.
2. Use shielded (screened) cables for all Signal and Control inputs. The shield connection point for the shield depends somewhat upon the application. (screen) pigtail connection should be made as short as possible. The shield should be connected to earth ground at both ends of the cable, usually when the noise source frequency is above 1 MHz.
3. Never run Signal or Control cables in the same conduit or raceway with AC power lines, conductors feeding motors, solenoids, SCR controls, and heaters, etc. The cables should be run in metal conduit that is properly grounded. This is especially useful in applications where cable runs are long and portable two-way radios are used in close proximity or if the installation is near a commercial radio transmitter.
4. Signal or Control cables within an enclosure should be routed as far as possible from contactors, control relays, transformers, and other noisy components.
5. In extremely high EMI environments, the use of external EMI suppression devices, such as ferrite suppression cores, is effective. Install them on Signal and Control cables as close to the unit as possible. Loop the cable through the core several times or use multiple cores on each cable for additional protection. Install line filters on the power input cable to the unit to suppress power line interference. Install them near the power entry point of the enclosure. The following EMI suppression devices (or equivalent) are recommended:
 - Ferrite Suppression Cores for signal and control cables: Fair-Rite # 0443167251 (RCLC# FCOR0000)
 - TDK # ZCAT3035-1330A
 - Steward # 28B2029-0A0
 - Line Filters for input power cables: Schaffner # FN610-1/07 (RCLC# LFIL0000)
 - Schaffner # FN670-1.8/07
 - Corcom # 1 VR3
 - Note: Reference manufacturer’s instructions when installing a line filter.
6. Long cable runs are more susceptible to EMI pickup than short cable runs. Therefore, keep cable runs as short as possible.
7. Switching of inductive loads produces high EMI. Use of snubbers across inductive loads suppresses EMI. Snubber: RLC# 5NUB0000.

4.1 POWER WIRING

DC Power
+9 to +28 VDC: +VDC
Power Common: -VDC

CAUTION: 9 to 28 VDC power circuit is not isolated from the signal circuit.

4.2 USER INPUT WIRING

Sinking Logic

The user input of the meter is internally pulled up to +9 to +28 V with 10 K resistance. The input is active when it is pulled low (<0.7 V).

CAUTION: The Plug-in cards and main circuit board contain static sensitive components. Before handling the cards, discharge static charges from your body by touching a grounded bare metal object. Ideally, handle the cards at a static controlled clean workstation. Also, only handle the cards by the edges. Dirt, oil or other contaminants that may contact the cards can adversely affect circuit operation.

REMOVING THE REAR COVER

To remove the rear cover, locate the cover locking tab below the 2nd and 3rd input terminals. To release the tab, insert a small, flat blade screwdriver between the tab and the plastic wall below the terminals. Inserting the screwdriver will provide enough pressure to release the tab locks. To replace the cover, align the cover with the input terminals and press down until the cover snaps into place.
4.3 INPUT WIRING

CAUTION: Power input common is NOT isolated from user and input commons. In order to preserve the safety of the meter application, the power input common must be suitably isolated from hazardous live earth referenced voltage; or input common must be at protective earth ground potential. If not, hazardous voltage may be present at the signal or user inputs and input common terminals. Appropriate considerations must then be given to the potential of the user and input commons with respect to earth ground; and the common of the plug-in cards with respect to input common.

Before connecting signal wires, the Input Range Jumper should be verified for proper position.

Input Signal (self powered)

<table>
<thead>
<tr>
<th>JUMPER POSITION</th>
<th>MAX INPUT CURRENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 μA</td>
<td>15 mA</td>
</tr>
<tr>
<td>2 mA</td>
<td>50 mA</td>
</tr>
<tr>
<td>20 mA</td>
<td>150 mA</td>
</tr>
<tr>
<td>200 mA</td>
<td>500 mA</td>
</tr>
</tbody>
</table>

Series Loop (must use separate supply for sensor power and each CUB5)

4.4 SETPOINT (OUTPUT) WIRING

SINGLE SETPOINT RELAY PLUG-IN CARD

DUAL SETPOINT N-FET OPEN DRAIN PLUG-IN CARD

4.5 SERIAL COMMUNICATION WIRING

SERIAL COMMUNICATIONS PLUG-IN CARD

USB PROGRAMMING

4.6 USB PROGRAMMING
5.0 Reviewing the Front Buttons and Display

REVIEWING THE FRONT BUTTONS AND DISPLAY

PROGRAMMING MODE ENTRY (SEL BUTTON)

It is recommended all programming changes be made off line, or before installation. The meter normally operates in the Display Mode. No parameters can be programmed in this mode. The Programming Mode is entered by pressing and holding the SEL button. If it is not accessible then it is locked by either a security code, or a hardware lock.

MODULE ENTRY (SEL & RST BUTTONS)

The Programming Menu is organized into separate modules. These modules group together parameters that are related in function. The display will alternate between Pro and the present module. The RST button is used to select the desired module. The displayed module is entered by pressing the SEL button.

MODULE MENU (SEL BUTTON)

Each module has a separate module menu (which is shown at the start of each module discussion). The SEL button is pressed to advance to a particular parameter to be changed, without changing the programming of preceding parameters. After completing a module, the display will return to Pro NO.

SELECTION / VALUE ENTRY

For each parameter, the display alternates between the present parameter and the selections/value for that parameter. The RST button is used to move through the selections/values for that parameter. Pressing the SEL button, stores and activates the displayed selection/value. This also advances the meter to the next parameter.

For numeric values, press the RST button to access the value. The right hand most digit will begin to flash. Pressing the RST button again increments the digit by one or the user can hold the RST button and the digit will automatically scroll. The SEL button will advance to the next digit. Pressing and holding the SEL button will enter the value and move to the next parameter.

PROGRAMMING MODE EXIT (SEL BUTTON)

The Programming Mode is exited by pressing the SEL button with Pro NO displayed. This will commit any stored parameter changes to memory and return the meter to the Display Mode. (If power loss occurs before returning to the Display Mode, verify recent parameter changes.)

PROGRAMMING TIPS

It is recommended to start with Module 1 and proceed through each module in sequence. When programming is complete, it is recommended to record the parameter programming and lock out parameter programming with the user input or programming security code.

FACTORY SETTINGS

Factory Settings may be completely restored in Module 2. This is useful when encountering programming problems.

ALTERNATING SELECTION DISPLAY

In the explanation of the modules, the following dual display with arrows will appear. This is used to illustrate the display alternating between the parameter on top and the parameter’s Factory Setting on the bottom. In most cases, selections and values for the parameter will be listed on the right.

6.0 Programming the Meter

OVERVIEW

PROGRAMMING MENU

- **Signal Input Parameters**
- **Secondary Function Parameters**
- **Display and Front Panel Key Parameters**
- **Setpoint Output Parameters**
- **Serial Setup Parameters**

PROGRAMMING MODE ENTRY (SEL BUTTON)

It is recommended all programming changes be made off line, or before installation. The meter normally operates in the Display Mode. No parameters can be programmed in this mode. The Programming Mode is entered by pressing and holding the SEL button. If it is not accessible then it is locked by either a security code, or a hardware lock.

MODULE ENTRY (SEL & RST BUTTONS)

The Programming Menu is organized into separate modules. These modules group together parameters that are related in function. The display will alternate between Pro and the present module. The RST button is used to select the desired module. The displayed module is entered by pressing the SEL button.

MODULE MENU (SEL BUTTON)

Each module has a separate module menu (which is shown at the start of each module discussion). The SEL button is pressed to advance to a particular parameter to be changed, without changing the programming of preceding parameters. After completing a module, the display will return to Pro NO.

SELECTION / VALUE ENTRY

For each parameter, the display alternates between the present parameter and the selections/value for that parameter. The RST button is used to move through the selections/values for that parameter. Pressing the SEL button, stores and activates the displayed selection/value. This also advances the meter to the next parameter.

For numeric values, press the RST button to access the value. The right hand most digit will begin to flash. Pressing the RST button again increments the digit by one or the user can hold the RST button and the digit will automatically scroll. The SEL button will advance to the next digit. Pressing and holding the SEL button will enter the value and move to the next parameter.

Pressing the SEL button toggles the meter through the selected displays. If display scroll is enabled, the display will toggle automatically every four seconds between the enabled display values.
6.1 MODULE 1 - SIGNAL INPUT PARAMETERS (I- INP)

PARAMETER MENU

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F- RANGE</td>
<td>Input Range</td>
</tr>
<tr>
<td>dECPL</td>
<td>Display Decimal Point</td>
</tr>
<tr>
<td>OFSEL</td>
<td>Display Offset Value</td>
</tr>
<tr>
<td>FILTER</td>
<td>Filter Setting</td>
</tr>
<tr>
<td>dSP 1</td>
<td>Filter Band</td>
</tr>
<tr>
<td>RANGE</td>
<td>Scaling Style</td>
</tr>
<tr>
<td>MP 1</td>
<td>Input Value for Scaling Point 1</td>
</tr>
<tr>
<td>dSP 2</td>
<td>Display Value for Scaling Point 1</td>
</tr>
<tr>
<td>MP 2</td>
<td>Input Value for Scaling Point 2</td>
</tr>
<tr>
<td>dSP 2</td>
<td>Display Value for Scaling Point 2</td>
</tr>
<tr>
<td>User Input Function</td>
<td>User Input Assignment</td>
</tr>
</tbody>
</table>

CUB5I INPUT RANGE

Select the input range that corresponds to the external signal. This selection should be high enough to avoid input signal overload but low enough for the desired input resolution. This selection and the position of the Input Range Jumper must match.

DISPLAY DECIMAL POINT

Select the decimal point location for the Input, MIN and MAX displays. This selection also affects the dSP 1 and dSP 2 parameters and setpoint values.

DISPLAY OFFSET VALUE

The display can be corrected with an offset value. This can be used to compensate for signal variations or sensor errors. This value is automatically updated after a Zero Display to show how far the display is offset. A value of zero will remove the effects of offset.

FILTER SETTING

If the displayed value is difficult to read due to small process variations or noise, increased levels of filtering will help to stabilize the display. Software filtering effectively combines a fraction of the current input reading with a fraction of the previous displayed reading to generate the new display.

Filter values represent no filtering (0), up to heavy filtering (3). A value of 1 for the filter uses 1/4 of the new input and 3/4 of the previous display to generate the new display. A filter value of 2 uses 1/8 new and 7/8 previous. A filter value of 3 uses 1/16 new and 15/16 previous.

FILTER BAND

The filter will adapt to variations in the input signal. When the variation exceeds the input filter band value, the filter disengages. When the variation becomes less than the band value, the filter engages again. This allows for a stable readout, but permits the display to settle rapidly after a large process change. The value of the band is in display units, independent of the Display Decimal Point position. A band setting of ‘0’ keeps the filter permanently engaged at the filter level selected above.

SCALING STYLE

If Input Values and corresponding Display Values are known, the Key-in (K) scaling style can be used. This allows scaling without the presence or changing of the input signal. If Input Values have to be derived from the actual input signal source or simulator, the Apply (APLY) scaling style must be used.

INPUT VALUE FOR SCALING POINT 1

For Key-in (K) style, enter the first Input Value using the front panel buttons. (The Input Range selection sets the decimal location for the Input Value.)

For Apply (APLY) style, the meter shows the previously stored Input Value. To retain this value, press the SEL button to advance to the next parameter. To change the Input Value, press the RST button and apply the input signal to the meter. Adjust the signal source externally until the desired Input Value appears. Press the SEL button to enter the value being displayed.

Enter the first Display Value by using the front panel buttons. This is the same for K and APLY scaling styles. The decimal point follows the dECPL selection.

INPUT VALUE FOR SCALING POINT 2

For Key-in (K) style, enter the known second Input Value using the front panel buttons.

For Apply (APLY) style, the meter shows the previously stored Input Value for Scaling Point 2. To retain this value, press the SEL button to advance to the next parameter. To change the Input Value, press the RST button and apply the input signal to the meter. Adjust the signal source externally until the desired Input Value appears. Press the SEL button to enter the value being displayed.

Enter the second Display Value by using the front panel buttons. This is the same for K and APLY scaling styles.

GENERAL NOTES ON SCALING

1. When using the Apply (APLY) scaling style, input values for scaling points must be confined to the range limits shown.
2. The same Input Value should not correspond to more than one Display Value. (Example: 20 mA cannot equal 0 and 20.)
3. For input levels beyond the programmed Input Values, the meter extends the Display Value by calculating the slope from the two coordinate pairs (dSP 1 / INP 1 and dSP 2 / INP 2).
USER INPUT FUNCTION

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>User Input disabled.</td>
</tr>
<tr>
<td>P-LOC</td>
<td>Program Mode Lock-out</td>
</tr>
<tr>
<td>Z-SEL</td>
<td>Zero Input (Edge triggered)</td>
</tr>
<tr>
<td>d-SEL</td>
<td>Display Select (Edge triggered)</td>
</tr>
<tr>
<td>d-LEU</td>
<td>Display Intensity Level (Edge triggered)</td>
</tr>
<tr>
<td>COLOR</td>
<td>Backlight Color (Edge Triggered)</td>
</tr>
</tbody>
</table>

MAX DISPLAY ENABLE

- **H1-En**
 - No
 - Yes

Enables the Maximum Display Capture capability.

MAX CAPTURE DELAY TIME

- **H1-t**
 - 0.0 to 9999 seconds

When the Input Display is above the present MAX value for the entered delay time, the meter will capture that display value as the new MAX reading. A delay time helps to avoid false captures of sudden short spikes.

MIN DISPLAY ENABLE

- **L0-En**
 - No
 - Yes

Enables the Minimum Display Capture capability.

MIN CAPTURE DELAY TIME

- **L0-t**
 - 0.0 to 9999 seconds

When the Input Display is below the present MIN value for the entered delay time, the meter will capture that display value as the new MIN reading. A delay time helps to avoid false captures of sudden short spikes.

FACTORY SERVICE OPERATIONS

- **FCS**
 - No
 - Yes

Select YES to perform either of the Factory Service Operations shown below.

RESTORE FACTORY DEFAULT SETTINGS

Entering Code 66 will overwrite all user settings with the factory settings. The meter will display `rSt12` and then return to `H1-Lo`. Press the **SEL** button to exit the module.

VIEW VERSION DISPLAY

Entering Code 50 will display the version (x.x) of the meter. The display then returns to `H1-Lo`. Press the **SEL** button to exit the module.

CALIBRATION

The CUB51 uses stored current calibration values to provide accurate current measurements. Over time, the electrical characteristics of the components inside the CUB51 will slowly change with the result that the stored calibration values no longer accurately define the input circuit. For most applications, recalibration every 1 to 2 years should be sufficient.

Calibration of the CUB51 involves a current calibration which should only be performed by individuals experienced in calibrating electronic equipment. Allow 30 minutes warm up before performing any calibration related procedure. The following procedures should be performed at an ambient temperature of 15 to 35 °C (59 to 95 °F).

CAUTION: The accuracy of the calibration equipment will directly affect the accuracy of the CUB51.

Current Calibration

1. Connect the negative lead of a precision DC current source with an accuracy of 0.01% or better to the COMM terminal. Leave the positive lead of the DC current source unconnected.
2. With the display at `CAL NO`, press and hold the **SEL** button for 2 seconds.
3. Unit will display `FCS` and then return to `H1-Lo`. Press the **SEL** button to exit the module.
4. Press the **SEL** button. Display reads 0.0A.
5. With the positive lead of the DC current source connected, press **SEL**. Display reads `FCS` for about 8 seconds.
6. When the display reads the selected range, connect the positive lead of the DC current source to INP+ and apply full-scale input signal for the range. (Note: For 200 mA range, apply 100 mA as indicated on the display.)
7. Repeat steps 3 through 6 for each input range to be calibrated.
8. 35 °C (59 to 95 °F)
The Security Code determines the programming mode and the accessibility of programming parameters. This code can be used along with the Program Mode Lock-out (P-Loc) in the User Input Function parameter (Module 1).

Two programming modes are available. Full Programming mode allows all parameters to be viewed and modified. Quick Programming mode permits only the Setpoint values to be modified, but allows direct access to these values without having to enter Full Programming mode.

Programming a Security Code other than 0, requires this code to be entered at the CodE prompt in order to access Full Programming mode. Depending on the code value, Quick Programming may be accessible before the CodE prompt appears (see chart).

Programming Security Code

<table>
<thead>
<tr>
<th>Security Code</th>
<th>Mode When "SEL" Button is Pressed</th>
<th>Full Programming Mode Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Full Programming</td>
<td>Immediate Access</td>
</tr>
<tr>
<td>1-99</td>
<td>Quick Programming</td>
<td></td>
</tr>
<tr>
<td>100-999</td>
<td>CodE prompt</td>
<td>With correct code entry at CodE prompt *</td>
</tr>
<tr>
<td>100-999</td>
<td>CodE prompt</td>
<td>With correct code entry at CodE prompt *</td>
</tr>
<tr>
<td>0-999</td>
<td>Full Programming</td>
<td>Immediate Access</td>
</tr>
</tbody>
</table>

* Entering Code 222 allows access regardless of security code.

User Input Function Parameters (3-dSP)

- **Display Update Time**
 - This parameter sets the display update time in seconds.

- **Front Panel Display Select Enable (SEL)**
 - The YES selection allows the SEL button to toggle through the enabled displays.

- **Front Panel Reset Enable (RST)**
 - This selection allows the RST button to reset the selected value(s).

- **Zero Display with Display Reset**
 - This parameter enables the RST button or user input to zero the input display value, causing the display reading to be offset.
 - Note: For this parameter to operate, the RST button or User Input being used must be set to dSP and the Input value must be displayed. If these conditions are not met, the display will not zero.

- **Display Scroll Enable**
 - The YES selection allows the display to automatically scroll through the enabled displays. The scroll rate is every 4 seconds. This parameter only appears when the MAX or MIN displays are enabled.

- **Units Indicator Selection**
 - This parameter activates the Units Indicator on the display. There are two methods of selecting the Indicator. List will present a group of Units preprogrammed into the meter. Segments allows the user to choose which of the segments should light.

- **Display Color (Backlight Unit Only)**
 - Enter the desired display color, red or green. This parameter is active for backlight units only.

- **Display Intensity Level (Backlight Unit Only)**
 - Enter the desired Display Intensity Level (1-5). The display will actively dim or brighten as levels are changed. This parameter is active for backlight units only.

Parameter Menu

- **Backlight Unit Only**
 - Pr
d

Note:

AUDIN - 8, avenue de la malle - 51370 Saint Brice Courcelles - Tel : 03.26.04.20.21 - Fax : 03.26.04.28.20 - Web : http: www.audin.fr - Email : info@audin.fr
The Setpoint Output Parameters are only active when an optional output module is installed in the meter.

SETPOINT SELECT

Enter the setpoint (output) to be programmed. The n in the following parameters will reflect the chosen setpoint number. After the chosen setpoint is completely programmed, the display will return to SPSEL. Repeat steps for each setpoint to be programmed. Select 0 to exit the module. The number of setpoints available is setpoint output card dependent.

SETPOINT 2 ENABLE

Select YES to enable Setpoint 2 and access the setup parameters. If NO is selected, the unit returns to SPSEL and setpoint 2 is disabled.

SETPOINT ACTION

Enter the action for the selected setpoint (output). See Setpoint Output Figures for a visual detail of each action.

- **Hf-BL** = High Acting, with balanced hysterisis
- **Lo-BL** = Low Acting, with balanced hysterisis
- **Hf-Ub** = High Acting, with unbalanced hysterisis
- **Lo-Ub** = Low Acting, with unbalanced hysterisis

HYSTERESIS VALUE

Enter desired hysterisis value. See Setpoint Output Figures for visual explanation of how setpoint output actions (balanced and unbalanced) are affected by the hysterisis. When the setpoint is a control output, usually balanced hysterisis is used. For alarm applications, usually unbalanced hysterisis is used. For unbalanced hysterisis modes, the hysterisis functions on the low side for high acting setpoints and functions on the high side for low acting setpoints.

Note: Hysterisis eliminates output chatter at the switch point, while time delay can be used to prevent false triggering during process transient events.

ON TIME DELAY

Enter the time value in seconds that the output is delayed from turning on after the trigger point is reached. A value of 0.0 allows the meter to update the output status per the response time listed in the Specifications.

OFF TIME DELAY

Enter the time value in seconds that the output is delayed from turning off after the trigger point is reached. A value of 0.0 allows the meter to update the output status per the response time listed in the Specifications.

OUTPUT RESET ACTION

Enter the reset action of the output. See figure for details.

- **Auto** = Automatic action; This action allows the output to automatically reset off at the trigger points per the Setpoint Action shown in Setpoint Output Figures. The “on” output may be manually reset (off) immediately by the front panel RST button or user input. The output remains off until the trigger point is crossed again.
- **Latch** = Latch with immediate reset action; This action latches the output on at the trigger point per the Setpoint Action shown in Setpoint Output Figures. Latch means that the output can only be turned off by the front panel RST button or user input.
button or user input manual reset, serial reset command or meter power cycle. When the user input or RST button is activated (momentary action), the corresponding “on” output is reset immediately and remains off until the trigger point is crossed again. (Previously latched alarms will be off if power up Display Value is lower than setpoint value.)

\[l \cdot d \gamma = \text{Latch with delay reset action; This action latches the output on at the trigger point per the Setpoint Action shown in Setpoint Output Figures. Latch means that the output can only be turned off by the front panel RST button or user input manual reset, serial reset command or meter power cycle. When the user input or RST button is activated (momentary action), the meter delays the event until the corresponding “on” output crosses the trigger off point. (Previously latched outputs are off if power up Display Value is lower than setpoint value. During a power cycle, the meter erases a previous l \cdot d \gamma reset if it is not activated at power up.)}\]

OUTPUT RESET WITH DISPLAY RESET

\[\begin{array}{cc}
RST & \text{n} \\
\text{NO} & \text{YES}
\end{array} \]

This parameter enables the RST button or user input to reset the output when the display is reset.

Note: For this parameter to operate, the RST button or User Input being used must be set to dSP and the Input value must be displayed. If these conditions are not met, the output will not reset.

STANDBY OPERATION

\[\begin{array}{cc}
db & \text{n} \\
\text{NO} & \text{YES}
\end{array} \]

When YES, the output is disabled (after a power up) until the trigger point is crossed. Once the output is on, the output operates normally per the Setpoint Action and Output Reset Action.

CHANGE DISPLAY COLOR w/OUTPUT STATE

\[\begin{array}{cc}
ChC & \text{n} \\
\text{NO} & \text{YES}
\end{array} \]

This parameter enables the backlight CUB5 to switch the backlight color when the output state changes. This parameter is only active for the backlight version.

6.5 MODULE 5 - SERIAL SETUP PARAMETERS (5-SEr)

The Serial Setup Parameters are only active when one of the optional serial communications/programming cards is installed in the meter. Refer to the CUB5COM bulletin for details and setup for the CUB5 RS232 or RS485 serial communications. Refer to the CUB5USB bulletin for details on the CUB5 USB programming and programming requirements.
Press and hold SEL button to enter Programming Mode.